Data mining is the process of transforming large batches of raw data into usable information. We mine data to uncover insights that lead to data-driven decisions.
Written by Anthony Corbo Image: Shutterstock / Built In UPDATED BY Matthew Urwin | Jan 11, 2024 REVIEWED BYData mining involves sifting through large data sets to determine patterns that can help businesses solve more complex problems. With these insights, companies can anticipate industry changes, emerging risks and new growth opportunities.
Data mining is the process of analyzing massive volumes of data and gleaning insights that businesses can use to make more informed decisions. By identifying patterns, companies can determine growth opportunities, take into account risk factors and predict industry trends.
Teams can combine data mining with predictive analytics and machine learning to identify data patterns and investigate opportunities for growth and change. With proper data collection and warehousing techniques, data mining can give companies across a range of industries the insights they need to thrive long-term.
Data mining provides a way to analyze large amounts of data to uncover a variety of potential business opportunities.
Data scientists and analysts use data mining techniques to dig through the noise in their data to uncover trends and patterns that can be used in decision-making, particularly when developing new business and operational strategies. Data mining can also be used to discover insights that lead to better marketing strategies, increased sales, decreased costs and reduced churn.
The volume of data that exists in the world continues to double nearly every two years, with unstructured data alone making up 90 percent of all existing data. As a result, the opportunities that can be uncovered through data mining are virtually limitless.
More on Built In Learning Lab What Is Data Integrity?
Data mining typically uses four data mining techniques to create descriptive and predictive power: regression, association rule discovery, classification and clustering.
Regression analysis is the most straightforward version of predictive power and is used to predict the value of a feature based on the values of other features in a data set. Regression can be used to predict a product’s revenue based on similar products sold or predict stock market status, amongst many other uses.
Association rule discovery allows analysts to discover relationships between items. For example, products commonly purchased with each other. This is useful for recommendation systems of multiple varieties, whether for content, products, restaurants or others.
Classification is a function of data mining that assigns items in a collection to specific categories or classes. The goal of classification is to accurately predict the class for each case in the data. Classifications do not determine order and are intended to predict relationships between data points. Sorting clothing by color would be a real-world example of classification.
Finally, clustering determines object groupings so objects in a particular group will be similar to one other while objects in another group are not. A common example is clustering customers together for effectively building marketing strategies.
What Is Data Mining? | Video: IBM TechnologyData mining is accomplished by implementing several steps that ensure collected data is accurate and usable within a specific context.
There are five steps data analysts use to successfully perform data mining:
Data mining provides advantages to businesses in any industry, but here are some of the broader upsides to consider:
Data mining is the process of analyzing large data sets to identify patterns. With predictive analytics and machine learning algorithms, you can quickly review these data sets and gain insights to improve various aspects of a business.
Data mining is legal, though researchers and companies must make sure they compile data from public sources and do so with proper consent.
Businesses use data mining to anticipate growth opportunities and risks, predict industry trends, solve complex challenges and make more informed decisions.